Tendon Transfers in Median, Radial & Ulnar Nerve Palsy

Jason Harvey
Hand, Wrist & Elbow Surgery
Principles

- Compliant Patient
 - Incl expectations
- Adequate Soft Tissue Bed
 - Wounds healed, scars mature
- Supple Joints
 - No transfer can move a stiff joint
Principles

- What’s missing?
- What do they really need?
- Sensate limb
SAVES

- **Strength**
 - At least Grade 4+ power

- **Amplitude**
 - 3,5,7 rule
 - Augment with tenodesis

- **Volition**
 - Must be able to control
SAVES

- **Expendable**
 - 5 control pron/sup
 - 7 control wrist
 - 18 flex/ext digits
 - 20 small muscles

- **Synergistic**
 - Easier retraining
LIFT

- **Line of pull**
 - Straight line if possible
 - Minimise “pulleys”

- **Integrity**
 - One tendon, one function
 - If 2 functions, greatest tension works first
LIFT

- **Fixation**
 - Bone better than tendon
 - End to side
 - End to end

- **Tension**
 - No consensus
 - Often experience
 - Tend to put in tighter
Low Median Nerve

- Loss of opposition
 - Is a combination of flexion, palmar abduction and pronation

- APB most important in achieving this
 - FPB, OP also role
EIP Opponensplasty

- Extensor Indicis
 - No loss of grip strength
 - No pulley requirement
- Harvest just proximal to MCP joint
- Second incision at radial aspect of ulna neck, expose EIP muscle (most distal)
EIP Opponensplasty

- Retrieve EIP
- 3rd incision just proximal and ulna to pisiform
- Develop a subcutaneous tunnel from pisiform to APB at thumb MCP
EIP Opponensplasty

- Tension so thumb rests in palmar abduction and opposite IF/MF w the wrist in neutral
FDS Opponensplasty

- RF or MF
 - Harvest at A1 pulley
- Pulleys
 - Ulna border of palmar fascia
 - FCU near pisiform
- SubQ tunnel to reach thumb
- Tension so wrist extension get full opposition
Palmaris Opponensplasty

- Often used when do CTR at same time
- Beware palmar br
- Take strip of palmar fascia
Palmaris Opponensplasty

- Tends to abduct more than oppose
- Can create a pulley in retinaculum
ADM Opponensplasty

- Predictably available
- Good if forearm trauma
- Release as far distal as possible
- Also must elevate muscle proximally
High Median Nerve

- Lose
 - Forearm pronation
 - Wrist flexion (FCR)
 - Thumb flexion
 - Finger flexion (IF, MF)
High Median Nerve

- Pronation loss
 - May be compensated for by shoulder and other muscles
 - Individualise as to whether needed
Thumb Flexion

- Brachioradialis to FPL

- Release from radial styloid and mobilise \(\frac{3}{4} \) of way up forearm

- Release FPL at musculotendinous junction
BR to FPL

- Provisionally attach and check tension
- Thumb should extend with wrist flexion
- Flex fully with wrist extension
Finger flexion

- IF, MF Flexion
 - FDP RF and LF side to side
- Identify tendons in forearm and placed mattress sutures through all 4 tendons to create 1 unit
Pronation transfer

❖ Biceps rerouting

❖ Step cut the tendon and reroute around radial side of proximal radius and re-attach to distal stump
Radial Nerve Transfers

- Injury above PIN
 - Lose all wrist and finger/thumb extension

- At PIN
 - Some wrist extension preserved, may deviate radially (ECRL)
Pronator Teres for Wrist Extension

- PT for wrist extension
 - Harvest strip of periosteum to achieve adequate length
 - Reroute around subQ border of radius
Palmaris for thumb extension

- PL for thumb extension
 - Take EPL out of compartment and reroute subcutaneously

- Must pass deep to superficial nerve branches
FCU type

- FCU for finger extension
- Must remove some muscle belly from distally
- Pass around ulna to get to EDC
FCR Type

- FCR for finger extension
- Pass around radius to get to EDC
FDS Type

- FDS (III-V) for finger extension
- Good especially if poor wrist range of motion
- Pass through interosseous membrane to get to EDC
Tensioning

- All 4 fingers extend together when wrist is flexed
- All fingers and thumb can be passively flexed into a fist with the wrist extended
Tensioning

- Wrist transfer first
 - Weave PT into ECRB with the wrist in 30-45 degs of extension
 - Wrist then brought to neutral and then weave FCR or FCU into EDC with the MCP joints in full extension
 - With EPL under full tension weave PL
Wrist transfer last
 - Donors to EDC & EPL with 30 degs wrist extension, fingers and thumb extended fully
 - Tension so 30 degs wrist flexion gives adequate extension and with wrist extended can fully passively flex digits
 - PT into ECRB so 30 deg resting posture of wrist
Post Op

- Immobilise
 - Wrist slight extension (30 degs)
 - MCP slight flexion (45 degs)
 - Thumb full abduction
Low Ulnar Nerve Palsy

- Loss of interossei and ulna lumbricals
- Weakness
- Deformity
- Uncoordinated
Low Ulnar Nerve Palsy

- Claw hand
- Lead with metacarpal heads on grasp
- Roll up of gingers in flexion
- Weakness of grip
Low Ulnar Nerve Palsy

- **Bouvier’s Test**
 - To determine if static transfer OK or dynamic needed
 - Block MCP extension, ask patient to actively extend IP joints
 - +ve test if can extend
Ulnar Nerve Transfers

- Bouvier’s Test +ve
- Can do a static procedure
- Simple Claw
 - MCP Capsulodesis
 - FDS Lasso
MCP Capsulodesis

- 3-4cm incision at distal palmar crease
- Release A1 pulleys
- Release proximal portion of volar plate
- Anchor to metacarpal neck
FDS Lasso

- Expose A1 & 2 pulleys
- Release the FDS at end of A2 pulley
- Retrieve between A1 & 2
- Sew back to self around A1 pulley
- In resting cascade
Ulnar Nerve Transfers

- Bouvier’s Negative
- Need to provide IP extension
- Complex Claw
 - FDS transfer
 - Wrist extensor-intrinsic transfer
 - Improve strength and synchrony
FDS Transfer

- Bruner incision over PIP
- Expose lateral band over proximal phalanx with separate incision
- Divide FDS as distally as possible
FDS Transfer

- Pass through lumbrical canal to radial aspect of small and ring fingers

- Tension to recreate digital cascade
Wrist extensor-intrinsic transfer

- ECRB or ECRL

- Use if combined palsy so no median motor to use
Wrist extensor-intrinsic transfer

- Pass volar to deep intermetacarpal lig
- Attach to radial lateral band
Ulna Transfers for Pinch

- Adductor pollicis and 1st Dorsal interosseous
- Loss of effective power pinch
- May also get significant IP flexion, MCP hyperextension
ECRB to Adductor Pollicis

- ECRB harvest and then retrieve proximal to retinaculum
- Take graft or Z-lengthen tendon
- Create tunnel between Add Pollicis & interossei volar to 2nd metacarpal and exit between 2nd/3rd metacarpal.
ECRB to Adductor Pollicis

- Suture to AdPol tendon with wrist in neutral and thumb adducted against index

- Firm adduction of thumb with wrist flexion and abduction with wrist extension
FDS III or IV to Adductor Pollicis

- Release A1 pulley and harvest FDS just proximal to decussation
- Tunnel FDS to ulna side of thumb
- Tension in 30 degs wrist extension and thumb against IF
Post Op

- Thumb spica for 4 weeks
- Then gentle AROM & active assisted
- At 8-10 weeks begin resistance
Summary

- Individualise transfers based upon patients' deficits and needs
- May not need all transfers in a set
- Stick to principles
Thank You